
Probing In-Context Learning: Impact of Task
Complexity and Model Architecture on Generalization

and Efficiency

Anonymous Author(s)
Affiliation
Address
email

Abstract

We investigate in-context learning (ICL) through a meticulous experimental frame-1

work that systematically varies task complexity and model architecture. Extending2

beyond the linear regression baseline, we introduce Gaussian kernel regression3

and nonlinear dynamical system tasks, which emphasize temporal and recur-4

sive reasoning. We evaluate four distinct models: a GPT2-style Transformer,5

a FlashAttention-enhanced Transformer, a convolutional Hyena-based model, and6

the Mamba state-space model. Each model is trained from scratch on synthetic7

datasets and assessed for generalization during testing. Our findings highlight that8

model architecture significantly shapes ICL performance. The standard Trans-9

former demonstrates robust performance across diverse tasks, while Mamba excels10

in temporally structured dynamics. Hyena effectively captures long-range depen-11

dencies but shows higher variance early in training, and FlashAttention offers12

computational efficiency but is more sensitive in low-data regimes. Further analysis13

uncovers locality-induced shortcuts in Gaussian kernel tasks, enhanced nonlinear14

separability through input range scaling, and the critical role of curriculum learning15

in mastering high-dimensional tasks.16

1 Introduction17

In-context learning (ICL) has emerged as a powerful paradigm in machine learning, enabling models18

to adapt to new tasks with minimal supervision by leveraging contextual information. Recent studies19

have framed ICL through the lens of meta-learning, where models learn to approximate functions20

from a distribution over tasks using only contextual supervision [6]. While foundational work has21

demonstrated the ability of transformers to internalize simple learning algorithms for tasks like linear22

regression [9], the scope of these investigations has often been limited to specific architectures and23

function classes.24

This project extends the study of ICL along two critical dimensions: function complexity and model25

generality. First, we incorporate more complex function families, such as Gaussian kernel regression26

and nonlinear dynamical systems, which introduce challenges related to smoothness, locality, and27

temporal dependencies. These function classes push the boundaries of ICL beyond simpler tasks28

previously explored. Second, we evaluate ICL performance across a diverse set of models: a baseline29

GPT2-style transformer, a transformer variant with FlashAttention [5], a Hyena-based attention-free30

model [11], and Mamba, a state-space model with selective recurrence mechanisms [10].31

By exploring this expanded landscape, we aim to uncover how architectural choices influence32

generalization in ICL settings. Our findings will provide insights into the strengths and limitations of33

Submitted to CS182 PROJECT DRAFT 2025
Our code and models are available at: https://github.com/Binwen6/CS182_PROJECT_DRAFT_2025

https://github.com/Binwen6/CS182_PROJECT_DRAFT_2025
https://github.com/Binwen6/CS182_PROJECT_DRAFT_2025


different architectures when confronted with increasingly complex learning tasks, ultimately guiding34

the development of more robust and versatile ICL systems.35

2 Related Work36

The study of in-context learning (ICL) has been significantly shaped by the meta-learning perspective,37

which views ICL as a process where models learn to approximate functions from a task distribution38

using contextual supervision. A comprehensive survey by Dong et al. (2022) [6] outlines the39

definitions, techniques, and applications of ICL, emphasizing its role in enabling few-shot learning40

without parameter updates.41

Foundational work by Garg et al. (2023) [9] established a framework for evaluating ICL using42

synthetic function families, such as linear regression and Fourier approximation. Their results43

showed that transformers can effectively internalize simple learning algorithms, but their analysis was44

constrained to a narrow set of architectures and function classes. Subsequent studies have expanded45

the scope of ICL to more diverse and complex function families. For instance, Cole et al. (2025) [4]46

explored ICL in linear dynamical systems, while Bhattamishra et al. (2023) [2] investigated its47

applicability to Boolean functions. Additionally, Sun et al. (2025) [12] and Cole et al. (2024) [3]48

applied ICL to nonlinear kernels and elliptic partial differential equations, respectively, highlighting49

the growing versatility of ICL across domains and underscoring the need to understand how different50

model architectures perform under these conditions.51

Concurrently, the development of architectures capable of handling long sequences more efficiently52

than traditional transformers has gained traction. FlashAttention, introduced by Dao et al. (2022) [5],53

addresses the computational bottlenecks of standard attention mechanisms by implementing an54

IO-aware exact attention algorithm, reducing memory usage and speeding up computations. The55

Hyena model, proposed by Poli et al. (2023) [11], offers an alternative by replacing attention with56

subquadratic-time convolutional operations, providing improved efficiency for tasks involving long57

contexts. Mamba, developed by Gu et al. (2023) [10], employs linear-time sequence modeling with58

selective state spaces, achieving state-of-the-art performance on various sequence modeling tasks,59

including language, audio, and genomics.60

The increasing diversity of ICL applications and the emergence of novel architectures motivate61

our work. Earlier studies investigated ICL in decision trees, sparse linear functions, and neural62

networks [9], while recent efforts have tackled time-dependent dynamics [4], Boolean functions [2],63

nonlinear kernels [12], and partial differential equations [3]. These developments highlight the impor-64

tance of evaluating how architectural inductive biases, such as recurrence in Mamba or convolution65

in Hyena, compare to attention-based mechanisms in complex ICL settings. Our work builds on66

these advancements by systematically assessing the ICL capabilities of diverse architectures across67

an extended range of function classes, offering a comprehensive analysis of how architecture design68

impacts ICL effectiveness in challenging and realistic scenarios.69

3 Approach70

In this section, we formalize the in-context learning (ICL) setup and describe the synthetic function71

families and model architectures that that we use. Our emphasis is on evaluating how various72

architectures internalize different function classes.73

3.1 Problem Setup74

We adopt a standard in-context learning (ICL) framework where the model is presented with a prompt75

{(xi, yi)}Ti=1 of input-output pairs followed by a query input xT+1. The model processes the full76

sequence [(x1, y1), . . . , (xT , yT ), xT+1] as a single input and is tasked with predicting yT+1. No77

parameter updates occur during inference; the model must generalize in-context from the prompt via78

forward computation.79

This setup follows the meta-learning perspective of ICL, where the model implicitly learns a distribu-80

tion over tasks and adapts to unseen functions on-the-fly, as discussed in Garg et al. [9].81

2



3.2 Function Families82

To evaluate ICL generalization, we define a set of synthetic task families F , each representing a83

distribution over real-valued functions f : Rd → R. Each sampled function generates a prompt and84

query for training and evaluation.85

Linear Regression. Each task samples a weight vector w ∼ N (0, Id), normalized to unit norm.86

The output is generated via:87

yi = ⟨w, xi⟩+ εi, εi ∼ N (0, σ2),

where σ is a fixed noise level.88

Gaussian Kernel Regression. We define a radial basis kernel regression task with C centers89

{cj}Cj=1 and weights β ∈ RC per task. For each input xi:90

yi =

C∑
j=1

βj · exp
(
−∥xi − cj∥2

2h2

)
+ εi.

Outputs are normalized to unit variance per batch and perturbed with scaled Gaussian noise. This91

setting introduces smooth nonlinearities and locality-aware structure.92

Nonlinear Dynamical Systems. Each task defines a recurrence rule xt+1 = F (xt) and output93

yt = ⟨v, xt⟩+ εt. The nonlinear transition F includes:94

• Polynomial:95

F (x) = Wx+W ′x2 + b (1)
• Tanh: F (x) = tanh(Wx+ b)96

• Duffing Oscillator, VDP, Lorenz: structured chaotic and oscillatory systems97

These tasks require the model to track latent states across time, highlighting architectural capacity for98

recurrence and memory.99

3.3 Model Architectures100

We evaluate four encoder-only architectures with matched parameter budgets:101

• Baseline Transformer: GPT2-style decoder-only transformer with causal self-102

attention [13].103

• FlashAttention Transformer: Variant with FlashAttention kernels [5] for IO-aware opti-104

mized attention (See Figure 1).105

• Hyena Transformer: Replaces self-attention with Hyena operators [11], using convolu-106

tional modulation mechanisms (See Figure 2).107

• Mamba: Selective state space model using implicit continuous-time recurrence [10] (See108

Figure 3).109

All models are trained from scratch and evaluated under the same context-query formulation.110

3.4 Training Procedure111

We train all models using the squared error loss between predicted and target query outputs:112

L =
1

B

B∑
b=1

(
fθ(x

(b)
T+1)− y

(b)
T+1

)2

.

3.5 Curriculum Learning113

To improve convergence and stability, we adopt curriculum learning [1, 14, 7]. During training, tasks114

are sampled from small dimensions, gradually increasing task complexity as training proceeds. This115

allows faster convergence, especially for difficult function classes like chaotic dynamics.116

3



Figure 1: FlashAttention mechanism. The design tiles attention computation to avoid memory
bottlenecks, achieving high throughput on modern hardware.

Figure 2: Hyena recurrence. Combines implicit long convolutions with multiplicative gating, allowing
attention-like behavior without quadratic cost.

3.6 Evaluation Criteria117

We evaluate the generalization ability of each model by computing:118

• Mean Squared Error (MSE) over test prompts119

The Mean Squared Error (MSE) is defined as:120

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

where yi is the actual value, ŷi is the predicted value, and n is the number of observations.121

• Generalization to new task instances from each function family122

• Robustness under context length variation and input noise123

• Scaling behavior as context length T increases124

Figure 3: Mamba architecture. Uses state-space sequence modeling (SSM) with gating and convolu-
tion to replace self-attention.

4



Model parameters are not updated at the test time. In all cases, the model must extrapolate in-context125

based solely on the prompt.126

4 Experiments127

4.1 Task and Dataset128

Same as [9], we evaluate in-context learning (ICL) capabilities by designing a synthetic experimental129

framework, where the model is trained to learn functions from a class F via prompt-based adaptation,130

without updating the model parameters explicitly. The setup is grounded in distributions DF over131

functions and DX over inputs.132

We begin by sampling a function f ∼ DF , and a sequence of inputs

x1, x2, . . . , xn ∼ DX .

These inputs are then stacked to construct the input prompt:

P = (x1, f(x1), . . . , xk, f(xk), xk+1).

Our goal is to let the models predict f(xk+1), using only the preceding k input-output pairs. This133

abstract framework enables us to evaluate and compare different model families on their intrinsic134

ability to learn in a context without explicit weight updates. In our experiments, we set k = 20 unless135

otherwise specified.136

Our experiments focus on two complex function classes: Gaussian kernel regression and nonlinear137

dynamical systems. For Gaussian kernel regression, functions are defined by a weighted sum of 20138

Gaussian kernels with a bandwidth of 1.5, where kernel centers and weights are sampled from a139

standard normal distribution N (0, 1), and outputs include additive Gaussian noise with a standard140

deviation of 0.1. Nonlinear dynamical systems are modeled with polynomial dynamics (up to degree141

3), with coefficients drawn from N (0, 1) and no added noise, emphasizing temporal and recursive142

dependencies. Inputs for both tasks are sampled from Unif([−1, 1]d), with dimensions tested across143

d ∈ {1, 10, 50, 100} to explore scalability and high-dimensional challenges. Synthetic datasets are144

generated on-the-fly with a batch size of 64, ensuring diverse function samples per batch. Random145

seeds are fixed for training and varied for testing to ensure reproducibility and fair generalization146

assessment. Models are trained to minimize the mean squared error (MSE), as defined earlier, and147

evaluated on test prompts with unseen functions and inputs, focusing on the prediction accuracy for148

f(xk+1).149

4.2 Model Structure150

We adopt a decoder-only Transformer architecture inspired by previous work [9] based on the GPT-2151

family, consisting of 12 layers, 8 attention heads, and a 256-dimensional embedding space. The152

model processes a sequence of embedded vectors and predicts the subsequent vector in the same153

representation space, analogous to language modeling.154

Each prompt sequence (x1, f(x1), . . . , xk, f(xk), xk+1) is embedded into the model’s latent space155

through two learnable linear projections: one for input xi and one for output f(xi), the latter being156

zero-padded to match the input dimensionality. The model predicts the target f(xk+1) based on the157

preceding k in-context examples.158

In addition, we experiment with several model variants, either by replacing the standard attention159

mechanism or changing the whole model architecture. Specifically, we also evaluate:160

• FlashAttention [5], an efficient attention implementation that greatly reduces memory161

consumption and runtime;162

• Hyena [11], a convolution-based alternative to attention for long-range dependency model-163

ing;164

• Mamba [10], a structured state space model (SSM) proposed as a strong attention-free165

sequence learner. In our experiments, we configure the Mamba model with 0 attention heads166

and 24 layers in total.167

5



4.3 Model Training168

4.3.1 Training Details169

We train all models under the same training objective using the squared error loss, following the170

approach outlined in [9]. All experiments are conducted on NVIDIA RTX 4090 GPUs. Model171

parameters are initialized from scratch and updated via gradient descent on randomly sampled input172

batches. The batch size is selected from {64, 128}, and each model is trained for 50k steps unless173

otherwise specified.174

The training dataset consists of 10k examples, with an additional 1k held out data for evaluation. The175

learning rate is chosen from {1× 10−4, 5× 10−5} depending on the model type and function family.176

For certain architectures and function families, we adopt a cosine learning rate schedule with a linear177

warm-up of 3k steps.178

For the nonlinear dynamical system function family, we increase the number of training steps and179

employ early stopping to ensure stable convergence and better generalization performance.180

4.3.2 Curriculum Learning181

During training, we apply a curriculum strategy in both the input subspace dimension and prompt182

length. Specifically, for the linear-like task, we begin by sampling prompt inputs from a 5-dimensional183

subspace (with other coordinates set to zero), and set the initial prompt length to 11 (corresponding184

to 11 input-output pairs), while for the nonlinear-like task, according to the setting of Garg et185

al. (2023) [9], we begin by sampling prompt inputs from a 5-dimensional subspace (with other186

coordinates set to zero), and set the initial prompt length to 26 (corresponding to 26 input-output187

pairs). Every 2k training steps, we increase the input subspace dimension by 1 and the prompt length188

by 2 for the linear-like task, along with 5 for the nonlinear-like task. This gradual increase continues189

until the dimension reaches 20 and the prompt length reaches 41 for the linear-like task while 101 for190

the nonlinear-like task.191

This curriculum significantly accelerates training, especially in higher-dimensional setting where192

convergence is slow or unstable otherwise.193

5 Results194

5.1 Tasks195

Gaussian Kernel Regression Based on GPT 2 architecture, the performance of Gaussian kernel196

regression task(4b) exhibits a fluctuating pattern with an overall mild downward trend, yet lacks clear197

stability compared with the linear regression task(4a). Despite outperforming the zero estimator on198

average, the Transformer displays noticeable instability, with several spikes exceeding the baseline199

error. This suggests that the model’s ability to utilize in-context examples effectively is limited in200

this setting. However, applying doubled inputs(4c) significantly reduces the squared error and yields201

a more stable performance compared to the standard Transformer. Continuing to grow the amount202

of in-context examples, the model achieved better results on Gaussian kernel regression, showing a203

more stable trend of deceasing(4d).204

Nonlinear Dynamics During the training process of nonlinear dynamical systems, the loss generally205

increases as the dimensionality, the number of data points, and task difficulty grow. However, within206

certain intervals, the loss decreases, indicating that the model benefits from gradually increasing207

complexity. Among the evaluated dynamical systems, they all showed a trend of decreasing.(5)208

Functions such as tanh and poly exhibit fast and smooth convergence as the number of in-context209

examples increases, as they have relatively lower complexity and higher compatibility with in-210

context learning. In contrast, the Lorenz system shows a significantly higher initial error and slower211

convergence, which is consistent with its known chaotic behavior and intrinsic complexity. The212

duffling system demonstrates a sharp decline in error with only a few examples, highlighting its213

strong sensitivity to the number of in-context samples. Meanwhile, logistic and vdp systems present214

intermediate patterns in both convergence speed and final error, reflecting their moderate learning215

difficulty.216

6



(a) Performance of linear regression tasks with
GPT-2.

(b) GPT-2 vs. zero estimator on Gaussian kernel
regression.

(c) Standard vs. input-doubled GPT-2 on Gaussian
regression.

(d) Effect of increasing in-context examples on
GPT-2.

Figure 4: Summary of GPT-2 results on linear and Gaussian kernel regression tasks.

(a) polynomial functions (b) tanh functions (c) logistic functions

(d) duffling functions (e) vdp functions (f) lorenz functions

Figure 5: Results of Nonlinear Dynamics Trained with GPT-2 Architecture

7



Both tasks are more complex than linear regression, and although their results are less ideal, they217

still demonstrate that the model has, to some extent, acquired knowledge of these functions through218

in-context learning.219

5.2 Architecture220

Hyena We compare the performance of a standard Transformer baseline and a Transformer aug-221

mented with Hyena(6b) filters on the same linear regression task. Although the Hyena-augmented222

model starts with higher initial error and greater early-stage variability, it exhibits a consistent down-223

ward trend and eventually achieves comparable performance. This progression indicates that the224

model is actively learning from context, not merely memorizing, and that the Hyena filters offer225

sufficient representational capacity for in-context learning despite their non-attentional nature.226

Flash Attention Evaluating the GPT 2 model with flash attention on the linear regression task(6c),227

while the Transformer equipped with Flash Attention achieves results that are generally consistent228

with the baseline Transformer, its performance is marginally lower. The model performs poorly229

on Gaussian kernel regression, with an error peak around 20 examples, while it shows lower and230

decreasing errors on Nonlinear Dynamics.231

Mamba In the linear regression task, Mamba(6d) shows a consistent reduction in error with more232

in-context examples, outperforming the zero estimator and approaching the performance of the233

Transformer. This indicates that the model is not guessing but indeed learning from context. In234

comparison, the results on Gaussian kernel regression are moderate, better than Least Squares but not235

very well, while performance on Nonlinear Dynamics is acceptable despite some initial fluctuations.236

(a) Transformer (b) Transformer with Hyena

(c) Transformer with Flash Attention (d) Mamba

Figure 6: Results of 4 architectures on linear regression task

Among the four architectures, the standard Transformer exhibits the most stable learning behavior,237

with smooth error reduction and strong final convergence. Mamba shows consistent and reliable238

performance throughout training, with error curves closely aligned with the Least Squares baseline,239

albeit with a slower learning rate in the early stages. Hyena demonstrates efficient learning and strong240

accuracy, though its initial performance can be more sensitive to sample size. Flash Attention achieves241

rapid convergence as the number of in-context examples increases, but exhibits larger fluctuations in242

the early phase, especially under limited data conditions.243

8



6 Discussion244

6.1 Architectural Adaptation on Function Properties245

Our comparative study across four architectural paradigms—GPT-2-style Transformers,246

FlashAttention-enhanced Transformers, Hyena, and Mamba—reveals that model architecture247

strongly biases performance across different function families in in-context learning (ICL).248

Transformer-based models exhibit relatively stable performance across all evaluated tasks, reflecting249

their general-purpose inductive bias and full-context attention mechanism [13]. However, they are250

constrained by quadratic scaling in compute and limited context lengths, even with optimizations like251

FlashAttention [5]. In contrast, Mamba excels in tasks involving recursive structure and temporal252

dependencies, such as nonlinear dynamics(7), achieving strong performance at significantly lower253

computational cost. This advantage stems from Mamba’s structured state-space design [10], which254

enables efficient sequential reasoning and localized integration of information without full prompt255

attention. Hyena [11] falls between these extremes, leveraging long-range convolutions, but its256

hybrid nature may diffuse its inductive alignment with any particular function class. These findings257

support the view that architectural alignment with the target function’s structure is critical to258

ICL success, especially for tasks with algorithmic or dynamical properties.259

(a) Transformer (b) Mamba

Figure 7: Comparison between the capability on nonlinear dynamics of Transformer and Mamba

6.2 Localization Effect Caused by Gaussian Kernel260

Initial experiments on Gaussian kernel regression revealed that naively applying a bare Gaussian261

kernel formulation leads to trivial solutions(4), with models achieving near-zero evaluation error262

regardless of training. This occurs because such kernels act as local interpolators: when support263

points are densely clustered, the model can exploit local smoothing to produce accurate outputs264

without needing to extract or generalize from the structure of in-context examples. To counteract265

this, we reframed the task by applying a linear readout layer on top of the Gaussian similarity266

features, turning the model’s objective into one of learning weighted combinations of localized267

kernels. While this adjustment made the task more representative and challenging—restoring error268

curves to expected behavior—it also introduced high variance across evaluation runs. We attribute269

this to the sensitivity of Gaussian kernels to input distribution geometry, particularly under small270

bandwidths or uneven spacing of support points. These results suggest that kernel-based ICL tasks271

must be carefully framed to balance local smoothness with global compositional reasoning.272

6.3 Exploitation on Nonlinear Terms for Geometric Separability273

In robustness experiments inspired by [8], we evaluated model behavior under doubled input domains.274

Surprisingly, models often performed better when the input range was expanded, especially on275

9



nonlinear dynamics tasks. We interpret this phenomenon through the lens of geometric separability276

in representation space(1). When input x-values are confined to [−1, 1], higher-order terms such277

as x2 and x3 exhibit minimal variation, making it difficult for the model to distinguish between278

support and query points. Doubling the input domain to [−2, 2] amplifies local variation, especially279

in nonlinear terms, thereby enhancing representational contrast. Additionally, when outputs are280

normalized post-scaling, the transformation effectively injects sharper curvatures and larger gradients281

into the same output range. These changes make derivative patterns more salient and easier to detect282

by local mechanisms like Mamba’s convolutional state updates or attention weights in Transformers.283

In this sense, input scaling can serve as a form of implicit feature amplification, improving sample284

efficiency and generalization on complex nonlinear functions.285

6.4 Mechanism Behind Curriculum Alignment286

We also identify a deeper structure underlying the curriculum learning strategy proposed by [8].287

Their method incrementally increases the input dimension and context length in synchronized stages.288

Upon analysis, we observe that the context length scaling ratio differs based on the complexity of289

the target function class: for linear regression tasks, the context length grows modestly to 2d+ 1,290

while for more expressive function families such as decision trees and two-layer neural networks, it291

expands more aggressively to 5d+ 1(4.3.2). This scaling ensures that more complex models observe292

sufficiently rich prompts to recover global structure, without overshooting the optimization budget.293

We further connect this to gradient starvation and symmetry breaking in non-curriculum training:294

starting with high-dimensional prompts leads to negligible gradient signals due to orthogonality and295

uniform input influence, causing models to stagnate until a mechanism is discovered. In contrast,296

curriculum learning offers a warm start in low-dimensional settings, progressively expanding task297

complexity while preserving training signal strength. This results in earlier mechanism discovery298

and faster convergence, especially for architectures like Mamba and Transformers that rely on stable299

subspace attention or state transitions.300

7 Conclusion301

In this work, we presented a evaluation framework for studying in-context learning (ICL) behaviors302

across a diverse set of function families and model architectures. Our experiments demonstrate that303

the architectural choices can have a rather strong impact on ICL performance, particularly under304

tasks with recursive or nonlinear temporal dependencies. We find that Mamba, a structured state305

space model, excels on nonlinear dynamical systems, while Transformers exhibit robust generality.306

Furthermore, we reveal the subtle phenomena such as the localization bias in Gaussian kernels,307

implicit feature amplification through input scaling, and convergence benefits from curriculum308

learning.309

There are a few directions that can be explored next. First, we saw that different model architectures310

behave differently depending on the type of function they’re working with. The function types may311

be broken down more carefully to investigate which models are best suited for which class, which312

could help us better understand the kinds of problems each model is naturally good at. Since Mamba313

seems to do well with time-related tasks, a natural step is to try mixing it with Transformers to build314

a model that handles both long-range and step-by-step reasoning.315

Also, we noticed that when we made the input range larger, the models actually learned better,316

especially for non-linear tasks. This might be because the differences between input values became317

more noticeable, making it easier for the model to pick up patterns. This can be studied more carefully,318

with smarter ways coming up to scale or reshape the inputs so that the important features stand out319

more and learning becomes easier.320

Despite these findings, our study has several limitations. First, the evaluation framework primarily321

focuses on synthetic tasks with well-defined function families, such as polynomial (1) and chaotic322

systems. While these tasks provide controlled settings to study ICL, they may not fully capture the323

complexity of real-world applications, where data distributions are often noisier and less structured.324

Second, the curriculum learning strategy (4.3.2) was tailored to specific dimensional and prompt325

length progressions, which may not generalize optimally across all model architectures or task326

types. Finally, our analysis of architectural performance, while comprehensive, is limited by the327

computational resources available, restricting the scale of models and the breadth of hyperparameter328

10



tuning. These constraints suggest caution when extrapolating our findings to larger models or diverse329

domains, motivating further investigation in the directions outlined above.330

References331

[1] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.332

In Proceedings of the 26th Annual International Conference on Machine Learning (ICML),333

pages 41–48. ACM, 2009.334

[2] Satwik Bhattamishra, Arkil Patel, Phil Blunsom, and Varun Kanade. Understanding in-context335

learning in transformers and llms by learning to learn discrete functions, 2023.336

[3] Frank Cole, Yulong Lu, Riley O’Neill, and Tianhao Zhang. Provable in-context learning of337

linear systems and linear elliptic pdes with transformers, 2024.338

[4] Frank Cole, Yulong Lu, Tianhao Zhang, and Yuxuan Zhao. In-context learning of linear339

dynamical systems with transformers: Error bounds and depth-separation, 2025.340

[5] Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and341

memory-efficient exact attention with io-awareness. arXiv preprint arXiv:2205.14135, 2022.342

[6] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,343

Zhiyong Wu, Tianyu Liu, Baobao Chang, Xu Sun, and Zhifang Sui. A survey on in-context344

learning, 2022.345

[7] Jeffrey L. Elman. Learning and development in neural networks: The importance of starting346

small. Cognition, 48(1):71–99, 1993.347

[8] Ankit Garg, Xueguang Liu, Weihua Hu, Fan Yang, Kevin Zhang, Percy Liang, et al. Can348

transformers learn in-context reinforcement learning? arXiv preprint arXiv:2206.02080, 2022.349

[9] Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can transformers learn350

in-context? a case study of simple function classes, 2023.351

[10] Albert Gu, Tri Dao, Daniel Y Fu, Nikita Buehler, Zexue Wang, Yung-Sen Chen, Alexander M352

Rush, and Christopher Re. Mamba: Linear-time sequence modeling with selective state spaces.353

arXiv preprint arXiv:2312.00752, 2023.354

[11] Michael Poli, Alexander Lialin, Rohan Mehta, Xuechen Zhai, Tri Dao, David Luan, Pavel355

Izmailov, et al. Hyena hierarchy: Towards larger convolutional language models. arXiv preprint356

arXiv:2302.10866, 2023.357

[12] Haoyuan Sun, Ali Jadbabaie, and Navid Azizan. In-context learning of polynomial kernel358

regression in transformers with glu layers, 2025.359

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,360

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information361

processing systems, 30, 2017.362

[14] Xiaoxia Wu, Ethan Dyer, and Behnam Neyshabur. When do curricula work?, 2020.363

11



A Self Review364

This section provides a self-review of the paper, addressing key aspects of the project, claims,365

experiments, and overall contributions in a question-and-answer format.366

• What is the main goal of the project?367

The primary objective of this project is to extend the in-context learning (ICL) setting368

established in Garg’s work by exploring a broader range of function classes and architec-369

tural variations. Specifically, we incorporate more complex tasks such as Gaussian kernel370

regression and nonlinear dynamical systems, and evaluate their performance under different371

model architectures. This allows for a deeper investigation into the mechanisms and factors372

that influence ICL behavior.373

• What are the main claims?374

We make three key claims based on our empirical findings. First, all models consistently375

achieve the best performance on the linear regression task, suggesting its relative simplicity.376

Second, model size positively correlates with ICL performance, reinforcing the capacity-377

driven nature of in-context learning. Third, while architectural differences matter for378

complex tasks, model performance tends to converge for simpler tasks, indicating that task379

complexity amplifies architectural distinctions.380

• What are the experiments?381

Our experimental setup involves replicating Garg’s original ICL experiments and ex-382

tending them by training four distinct model architectures — a standard Transformer,383

a FlashAttention-enhanced Transformer, a Hyena-based model, and Mamba — on three384

synthetic datasets. We then evaluate and compare their generalization abilities under a385

unified testing protocol.386

• What is the evaluation protocol?387

Models are evaluated primarily using Mean Squared Error (MSE), with fixed random seeds388

and consistent hyperparameter configurations to ensure fair comparison. We also monitor389

training variance and convergence speed, especially in tasks with temporal or nonlinear390

structure, to better understand each model’s strengths and weaknesses.391

• What is the data?392

The datasets consist of three types of synthetic tasks, each containing 10,000 samples: (1)393

linear regression, (2) Gaussian kernel regression, and (3) nonlinear dynamical systems. All394

datasets are generated from the same Gaussian-distributed inputs, with training and testing395

sets independently sampled to ensure no overlap or information leakage.396

• What is the task?397

The task is to evaluate how different neural network architectures perform in in-context398

learning scenarios, where models are required to predict the output of a new input solely399

based on a sequence of input-output examples, without any parameter updates. We evaluate400

this across three function tasks: linear regression (baseline), Gaussian kernel regression, and401

nonlinear dynamics.402

• How do the experiments support the goal/claims of the paper?403

The experiments involve applying each model to all three tasks in a unified in-context404

learning setup. First, we evaluate all models on the same task, particularly the linear405

regression task, which serves as a common baseline to assess relative model capacity and406

generalizability. This comparison supports our first and second claims: that linear regression407

is the simplest task and that larger models tend to perform better across the board. Second,408

we compare its performance across tasks of increasing complexity with a fixed model to409

analyze how task difficulty interacts with architectural properties. This second dimension410

supports our third claim: that architectural differences become more pronounced as task411

complexity increases, while models tend to converge in performance on simpler tasks.412

• Are any of the limitations discussed in the paper?413

Yes. A key limitation is the unstable performance of models on the Gaussian kernel414

regression task. Although the overall error tends to decrease with more in-context examples,415

the curve often shows small spikes and fluctuations. We suspect this is due to the localized416

nature of the Gaussian kernel, which makes model predictions highly sensitive to the417

distribution of support points.418

12



• What are the strengths of the paper?419

The strengths include moving beyond the usual linear regression task to include Gaussian420

kernel regression and nonlinear dynamical systems, and evaluating four different sequence421

models under a single and carefully controlled framework. By training all models from422

scratch on synthetic data points and turning raw performance numbers into concrete insights,423

the paper serves as a valuable reference for ICL benchmarking and model design.424

• What are the weaknesses of the paper?425

Firstly, all the data points used in training and testing is synthetic, and the study does not426

test whether the conclusions can be transferred to real-world sequence problems. Also, the427

evaluation focus entirely on MSE, without explanation of mechanistic interpretability or the428

potential downstream use of ICL.429

• Provide a suggestion for improving the paper.430

A suggestion for improvement is to repeat every experiment with 5-10 random seeds, and431

report the 95% confidence interval for each model architecture-task pair, which could help432

decide whether certain dips are systematic or just due to luck.433

• What is the relevant related work?434

The relevant related work includes Garg et al(2023) which gives the Foundational ICL435

benchmarks and theory. Also for the architectural innovations, we mainly refer to FlashAt-436

tention (DAO 2022) which reduces the quadratic memory bottleneck, Hyena (Poli et al.,437

2023) which replaces attention with filtered convolutions, and Mamba (Gu et al., 2023) that438

uses selective state-space recurrence.439

• Is the paper reproducible?440

The paper is reproducible because the full training and testing codes are available on public441

GitHub repositories, and we have random seed settings to make sure the results can be rerun442

and regenerated.443

• Can you rerun the experiments?444

Yes, the experiments can be rerun, as the datasets are synthetically generated using the445

provided codebase, and the computational resources required are accessible with standard446

GPU hardware. All model configurations and training settings are reproducible under the447

same environment.448

• Can you reproduce the results in the paper?449

The results are reproducible, as we have saved the pretrained model in the file. By using the450

same parameter settings and following the same procedures, one should be able to replicate451

our results.452

• Are all the plots in the paper clearly interpretable with well-defined and explained453

axes, with the methodology clearly explained in the paper text?454

Yes, the plots are clearly interpretable, as the axes are properly labeled and the methodologies455

are clearly presented. However, it is still necessary to standardize the scales and criteria456

across the graphs to enable meaningful comparison.457

• Is the English in the paper correct and clear?458

The English used in the paper is clear and grammatically correct, as we have carefully459

reviewed and polished the writing. We also compared our manuscript with relevant reference460

papers to ensure clarity and consistency in presentation.461

• Do you have any feedback on any TODOs that the authors have left at this stage?462

The paper includes TODOs such as conducting experiments with alternative parameter463

settings to improve performance, as well as running parallel experiments. We also plan to464

revise and standardize some of the figures to ensure proper comparability and to perform465

additional experiments to draw more comprehensive conclusions.466

B OOD: Out-of-Distribution Experiments467

This section of appendix is a supplement to the result of out-of-distribution experiments with abundant468

visualization.469

13



B.1 Transformer with Flash Attention470

(a) Half-subspace (b) NoisyLR (c) Orthogonal Sampling

(d) Random Quadrants (e) Scaled Distribution (f) Skewed Distribution

Figure 8: Results of OOD Sampling on GPT2 with Flash Attention

B.2 Hyena471

(a) Half-subspace (b) NoisyLR (c) Orthogonal Sampling

(d) Random Quadrants (e) Scaled Distribution (f) Skewed Distribution

Figure 9: Results of OOD Sampling on Hyena

14



B.3 Mamba472

(a) Half-subspace (b) NoisyLR (c) Orthogonal Sampling

(d) Random Quadrants (e) Scaled Distribution (f) Skewed Distribution

Figure 10: Results of OOD Sampling on Mamba (Gaussian Kernel Regression)

(a) Half-subspace (b) NoisyLR (c) Orthogonal Sampling

(d) Random Quadrants (e) Scaled Distribution (f) Skewed Distribution

Figure 11: Results of OOD Sampling on Mamba (Nonlinear Dynamics)

15


	Introduction
	Related Work
	Approach
	Problem Setup
	Function Families
	Model Architectures
	Training Procedure
	Curriculum Learning
	Evaluation Criteria

	Experiments
	Task and Dataset
	Model Structure
	Model Training
	Training Details
	Curriculum Learning


	Results
	Tasks
	Architecture

	Discussion
	Architectural Adaptation on Function Properties
	Localization Effect Caused by Gaussian Kernel
	Exploitation on Nonlinear Terms for Geometric Separability
	Mechanism Behind Curriculum Alignment

	Conclusion
	Self Review
	OOD: Out-of-Distribution Experiments
	Transformer with Flash Attention
	Hyena
	Mamba


